
UV

HOP A Process Model for Synchronous Hardware

r% Semantics, and Experiments in Process Composition

Lf) Ganesh C. Gopalakrishnan Richard M. Fujimoto
(t) Venkatesh Akella and Narayana S. Mani
0
N UUCS-88-012

August 15, 1988I

DTICS ELECTE
JAN 2 6 989D

ApprovtcJ toi r u;k|: rpl;' sfl
Ditumiution U nuimited

89 1 25 056

HOP: A Process Model for Synchronous Hardware
Semantics, and Experiments In Process Composition

Ganeah C. Gopalakriahnant , Richard M. Fujimotott
Venkateah Akella and Narayana S. Mani

Dept. of Computer Science, Univeraity of Utah

IP 'tv, Salt Lake City, Utah 84112, U.S.A

Abstrat. T enf lang age v'adware viewed as Objects and Processes' (HOP) forAbstrt,. pnset a language,,a so s,
8pecifying the structure, behavior, and timing of &ardwaiv systems. HOP embodies a simple
process model for lock-step synchronous processes. An absproc apeciftction written in HOP
describes the externally observable behavior of a process. A collection of absprocs may be
composed to form a larger process, using the operators parallel composition, renaming, and
hiding.t
9-k tl is paper9nwe presenkthe communication primitives of HOP, illustrate HOP through
several ezamples, and then present its operational semantics. Then we present the role played
by HOP in in three VLSI design activities: (i) inferring concise behavioral descriptions of
systems from their structural descriptions; (ii) static detection of control timing errors during
behavioral inferrence; (iii) productive and runtime efficient functional simulation using the
inferred behavior. (

tSupported in part by the National Science Foundation via MIP-8710874
itSupported in part by ONR Contract Number 00014-87K-0184

Note: Some portions of this paper will appear in the Proceedings of the 1988 Banff. Work-
shop on Hardware Verification, Banff, Canada, June 1988 (to be published by Springer-Verlag).

•AccesTon For

O NTIS C aI

DTIC T A -

40d i; ;;
i ,

By~

Dist

Contents
I Introduction 1

1.1 Understanding the Modeling Philosophy of HOP 2
1.2 Related Work .. 4

2 The HOP Language 5
2.1 Specifying an Absproc 6

2.1.1 Ports and Value Communication 7
2.1.2 Events 8
2.1.3 Data Path States 9
2.1.4 The Timing Model 9
2.1.5 An Example of an Absproc: A Pipelined Memory 11

2.2 Specifying Realprocs and Vecprocs 12

3 Semantics of HOP 14
3.1 An Operational Semantics for HOP 14

3.1.1 Action Product 16
3.1.2 Definition of the Transition Relation Z- 16

3.2 Section Summary ... 19

4 Illustration of PARCOMP 20
4.1 What Exactly Does PARCOMP Do? 20
4.2 Illustration of PARCOMP on the Stack 20
4.3 How Does PARCOMP Work? 22

4.3.1 Lockstep Cross-product Automaton 22
4.3.2 An Illustrative Example 22

5 Experiments with PARCOMP 27
5.1 Introducing Protocol Errors 27
5.2 Pipelining the Stack 28
5.3 Testing the Pipeined Stack, aided by PARCOMP 30

5.3.1 Detecting Timing Errors in Tester Processes Statically 32
5.3.2 Obtaining Symbolic Simulation Results Without Simulation 32
5.3.3 Building Partial Testers 32
5.3.4 Interpreted Realproc Simulator 33
5.3.5 The use of Probe Processes 33
5.3.6 Checking for Representation Invariants 34

6 A Divide-and-conquer PARCOMP, PARCOMP-DC 34

7 Summary of the Paper 36

A Appendix 41

ii

A.1 A Specification of PARCOMP 41
A.2 A Brief Description of the HOP Design System 42

List of Figures

1 The Skeleton of an Abproc Specification 5
2 The Skeleton of an Realproc Specification 6
3 The Skeleton of a Vecproc Specification 6
4 Use of Data Assertions and Queries for Value Communication 7
5 Specifications of & Memory 10
6 Depiction of the PROTOCOL Specification of MEM 11
7 Stack's Submodule:- CTR: An up/down counter; SCTL: Stack Controller . . 13
8 Schematic of the Realproc of a Stack 14
9 Realproc of a Stack 15
10 Definition of Action Product in HOP 16
11 An Example HOP Specification 19
12 Temporal Logic Equivalent of the Example HOP Specification 19
13 Absproc Automatically Inferred from stkreal using PARCOMP 21
14 Processes A, B, and AB 23
15 The Realization of the System AB 24
16 Inferred Behavior of the Stack using an Erroneous SCTL 27
17 The Pipelined Stack Controller 28
18 Inferred Behavior of the Pipelined Stack (one that uses PCTL) 29
19 A Tester Process for the Pipelined Stack 30
20 Composition of the Tester and the Testee (the pipelined Stack)31
21 Divide and Conquer PARCOMP 35
22 Data Flow Diagram of the HOP Design System 43

|ii

I Introduction

The use of formal specifications for specifying, verifying, manually designing, and automat-
ically synthesizing hardware systems is becoming widespread. Not only are there different
formal specification languages, but also there are a number of different formalisms in use:
Functional Programming [21,35] Prolog [38], Petri Nets [7], Temporal Logic [4], various Calculii
of Communicating Systems (26,16] Trace Theory [36], Higher Order Logic [6,22], Algebraic
Specifications and Equational Techniques [14,37,32], Synchronized Transition Systems [9], and
Path Expressions [1J, to name a few. Enough impressive results have been demonstrated to
justify the use of formal specifications for VLSI design. However, as will be discussed momen-
tarily, many problems in the use of formal specifications for VLSI design remain unsolved.
More importantly, many indirect benefits of writing formal specifications--especially for un-
ambiguous documentation of designs, supporting design automation activities, etc.--have not
been emphasized enough.

In this paper, we present a simple and formal Hardwve Description Language (HDL)
"HOP" (Hardware viewed as Objects and Processes), and present its role in three VLSI
design activities: (i) inferring concise behavioral descriptions of systems from their structural
descriptions; this is done using an algorithm called PARCOMP; (ii) the detection of control
timing errors during behavioral inference; (iii) productive and runtime efficient functional
simulation using the inferred behavior. The main contributions of this work are believed to
be: (i) doing the above three tasks by capitalizing on the the formal semantic rules of the
language HOP; (ii) demonstrating the utility of these ideas on a working implementation of
HOP and PARCOMP.

Despite being a formal specification language, HOP specifications are easy to understand.
HOP can intuitively model the intricate timing protocols that synchronous hardware systems
exhibit. It can model commonly used structures in VLSI, such as through connections and reg-
ular arrays, directly. It has the ability to highlight timing/control aspects, and function/data
aspects separately, so that designers may focus on one aspect at a time. Last, but not the
least, HOP has a simple semantics that can be exploited for doing PARCOMP, functional
simulation, and design verification.

We now present the motivation for designing HOP, and our specific results to date.

Motivation

Specifying the timing protocols and the functional behavior of synchronous systems with
clarity is quite important. More importantly, the functional details are also intricately inter-
woven with timing. The examples in this paper are chosen to illustrate the clarity with which
HOP can specify such intricate behaviors.

It has been reported that the complete formal verification of even extremely simple ICs is
at present a challenging task [8]. More importantly, impressive results with theorem provers
have almost always been exhibited by persons who played a major role in developing the
theorem prover (and hence knew its innards)-not by end-users of theorem provers. Until
these situations change significantly, the main uses of formal specifications will be for its
indirect benefits--better understanding of designs, better communication among hardware
designers and systems-software writers, and support for specification-driven design automation
activities. In this paper, we focus on such indirect benefits of using HOP.

Specific Results Reported, and Organization of the Paper

" Section 2 presents the HOP language, and illustrates the various language concepts
introduced through the example of a simple stack.

" Section 3 presents the operational semantics of HOP. (Note: If the reader were to feel
intimidated by the formal notation in this section, then he/she may read this section
cursorily without much loss.)

* Section 4 illustrates PARCOMP on a simple example, and also illustrates how each rule
of the the operational semantics are used.

" Section 5 presents various experiments conducted using PARCOMP. First, we present
the result of performing PARCOMP on the stack module. We then deliberately intro-
duce errors into the stack controller, and show how PARCOMP can (often) reveal these
errors. We then show how the stack may be pipelined, and present the behavior of the
pipelined stack inferred using PARCOMP. We also show how PARCOMP can be used
to make functional simulation more productive and efficient.

* Section 6 presents a divide-and-conquer version of PARCOMP. This technique exploits
two disparate facts: (i) that the PARCOMP operator is commutative and associative;
(ii) that VLSI systems have a high replication factor-i.e. the ratio of the total number
of modules to the number of different modules.

" Section 7 presents our conclusions; In appendix A.2, we briefly describe the HOP design
system that was used to produce the results reported.

1.1 Understanding the Modeling Philosophy of HOP

One significant aspect of HOP is that it emphasizes the use of abstract data types for hardware
modeling. This was motivated by the positive results from the first author's past work with
the SBL language [14,10,11]. We now present through a simple example the essence of HOP.

Consider a stack data type implementation that uses a counter to implement the stack
pointer and a memory array to implement the stack locations. If such a stack were to be
specified as a "software data type", the definitions of the stack operations (say push, pop,
and top) would be provided via functional expressions that use operators on the stack pointer
and memory types. The stack state would be modeled as a tuple < ctr,vmem >, consisting
of the counter and memory states. The operation push can be modeled via the functional
expression:

push(< mem,tr >,v) 4< write(mem, read(r),v), adl (cr)>.

This says that the memory state should advance to write(mem, red(ctr), v) and that the
counter state should advance to addl(tr). This view of hardware systems-that they imple-
ment a collection of intuitive to grasp mathematical functions-is also taken in [21].

As we showed in our past work with SBL, these kinds of specifications may be implemented
in hardware by synthesizing controller modules that "fire" the operations write, read, addl,
etc. in an applicative order (actually the in situ evaluation order (13], which is slightly more

2

restrictive than the applicative order). However for this technique to be widely applicable,
it should be possible to view a wide variety of hardware systems as data types. This isn't
natural often, especially where control aspects dominate. More seriously, the "software data
type like" approach does not permit the specification of complex timings naturally, although
it has been attempted [10,34].

The Concept of "Modes of Behavior"

HOP takes a crucial departure from the functional/data-type view of hardware. Rather than
considering data-type operations, or functions, we focus on modes of behavior. A modes of
behavior is a more general notion than that of an operation. It is like a trace of [17]. A mode
of behavior is best characterized as a 'initely describable (and often finite) sequence of events,
data input actions, and data output actions.

For example, consider a memory data type that has a read operation. A realization of the
memory has many possible (depending on design decisions such as pipelining etc.) read modes
of behaviors. One such mode of behavior consist of a read trigger event, a data input action
corresponding to the supply of address, and a data output action corresponding to the output
of the read data. These three actions may come in any order, with the only constraint that
the ith read event trigger and ith address input must precede the ith data output. Clearly,
many different modes of behavior are admitted by this (rather loose) constraint. For example,
a memory with a pipelined implementation of the read operation defines one specific mode of
behavior for read. A memory that queues upto (say) 12 read requests before it outputs any
data item, defines another mode of behavior. So not only do we need mathematical functions
to define I/O mappings from states and inputs to new states and outputs, but we also need
a way to capture the timings involved. The functions and their inputs and outputs must be
inter-woven with the timing aspects of the mode of behavior.

Specifying Modes of Behavior in HOP

HOP is intended to capture modes of behavior directly. It does so by introducing a protocol
specification section. Let us understand the way protocol sections are written. Consider the
pipelined read operation, again. One of the most natural ways of explaining the behavior
of such an operation to a person is by drawing the picture of a Deterministic Finite-state
Automaton (DFA). One may ask, "why not use DFAs directly for specifying hardware"?

This question is being considered mainly for two reasons. For one, in this paper we
portray HOP process specifications through "DFA-like graphs", and we want to avoid the
readers trivializing HOP as a DFA specification language. For another, it is widely known
from human studies that explaining a new concept by first presenting a related but much
weaker concept, and then showing that such a concept won't suffice, is very effective.

The following are some of the important reasons:

* DFA based languages cannot handle data related aspects well; modeling data path states
as automaton states results in an explosion of the number of states. In contrast, in HOP
we use high-level abstract data type (ADT) objects to model data related aspects. Only
control states are explicitly modeled. Data related aspects are captured by annotating
the control graph. By doing so, both the data and control related aspects of a system
are completely specified at a high level.

3

" The use of ADTs in HOP addresses systems engineering issues such as reported in [3].
Hardware systems are developed over a long time, and initially, only the "what" aspects
(requirements) on the system's behavior are known. High-level ADTs can be used to
write a requirements specification of the system--and refined later when design details
become known. These benefits are not available if DFA based models are used.

" Similar to the act of introducing ADTs, HOP allows writing requirements specifications
for the temporal aspects of a system using the concept of events.

" HOP's process model addresscs design issues such as the connection of modules via
busses, a well as the related issue of strengths[5].

" HOP's process model is based on the three fundamental operations of hierarchical system
design--composition, hiding, and renaming-as identified by Milner[29]. Since HOP is
a high-level specification language for synchronous systems, the study of these (and
related) operations provides a design theory for synchronous VLSI systems.

* Despite basing HOP on the above elementary mathematical operators, we do not propose
that users program directly using these operators. Instead, in the HOP language we
provide high level constructs that could be easily translated to a (much larger and
relatively very low level) description using these elementary operators. Thus, ease of use
as well as formal semantics are both provided.

1.2 Related Work

We compare HOP with other works on two aspects: (i) in its capability to specify complex
timing and functional behaviors; (ii) in its capacity to perform PARCOMP, simulation based
on PARCOMP, and the detection of control timing errors. Many features of HOP have been
omitted here, but have been reported elsewhere[12].

HOP is close in some respects to the work of Milne [26]. The main differences with it are
the following:

I. In HOP, value communication has been decoupled from synchronization. The advantages
of doing so are discussed in section 2.

2. We emphasis the modeling of value communications and data path state changes in
a simple, yet powerful, abstract data type oriented functional language. This is not
addressed in [26].

3. HOP adopts a specific timing model-that of lock-step synchronous processes. HOP
processes are deterministic. These decisions contribute directly to the simplicity of the
language and makes specification driven design more practical.

On the other hand, Circa] includes primitives that are more elementary, and hence more
powerful at the expense of being of lower-level.

4. HOP is well suited for describing synchronous hardware systems. A large majority of
VLSI systems are synchronous. In this realm, we have conducted a more thorough
investigation of many practical aspects of VLSI design.

4

ABSPROC <Moduleas> C<formal pa-ams pertaining to sizes & types>)
CONST <list of constants of the same value)
TYPE <list of type identifiers of the same type>
PORT <list of ports of the same type>
CLOCK (t clock agent and the ports imported from it>
EVENT <events and their encodings in terms of port values>
PROTOCOL < list of process definitions>
DEFUN <a list of function definitions>
END <ModuleName>

Figure 1: The Skeleton of an Absproc Specification

HOP is different from more traditional languages (e.g. VHDL[I8], Karl[30], and ISPS[2])
in many ways, the most important being the following: (i) HOP is much simpler than these
languages, and has an equally simple formal semantic definition; (ii) The view of hardware
as communicating processes is attractive in many ways than modeling hardware behavior
through traditional imperative constructs (procedural or non-procedural descriptions). By
creating HOP, we are not discarding or ignoring ongoing efforts towards developing standard
HDLs such as VHDL. Our objective is to experiment with interesting ideas not present in
such standard languages, and the results may one day benefit future versions of VHDL.

PARCOMP, as well as its planned uses, are similar to the work reported in [15], and
to the idea of constructive simulation reported in [27]. However our work is done for a
much higher level language that includes user-defined abstract data types. Our algorithm
embodies useful static checks of timing protocols. Our algorithm capitalizes on the structural
information (specifically, knowledge about events that are completely hidden within a module)
to save on computation time. This is accomplished thus (explained in detail later): "states
reachable via transitions labeled by unsynchronized and hidden events are never visited, and
consequently the search-space is pruned." Further, we have developed a version of PARCOMP
called PARCOMP-DC that can exploit the regularity of vecprocs using a divide-and-conquer
technique (section 6). Finally, PARCOMP can be used to save the time of simulation; we
can perform a "pre simulation" of the tester and the testee using PARCOMP, and run the
resultant process. These computational-effort saving measures are believed to be new.

2 The HOP Language

The basic unit of specification in HOP is the module. The external attributes of a module
are:

e Zero or more uni- or bi-directional data ports;
" Zero or more uni-directional events;
" An external protocol specification.

A module specified as a black box is called an absproc, standing for abstract process.
The skeleton of an ABSPROC is shown in figure 1. A module specified as a network of
subprocesses is called a reaproc, the skeleton of which appears in figure 2. (Note: For ease of

5

REA LOC <oduleName) [<formal params pertaining to sizes A types>]
CONST <list of constants of the same value>
TYPE <list of type identifiers of the same type>
PORT (the external ports of the module being defined>
SUBPROCESS <instantiations of prev. defined abs/real/vec processes>
CONNECT (the set of interconnections among the subprocesses>
END (Module~ame>

Figure 2: The Skeleton of an Realproc Specification

VECPROC <ModuleNams> [cformal parama pertaining to sizes & types>]
CONST <list of constants of the same value>
TYPE <list of type identifiers of the same type>
PORT (the external ports of the module being defined>
SUBPROCESS <instantiations of prey. defined abs/real/vec processes>
DIMENSIONS <the SIZES of each dimensions of regularity>
CONNECT <interconnections beth. subprocesses, via recurrence eqns.>
END <ModuleName>

Figure 3: The Skeleton of a Vecproc Specification

parsing, currently we use a lisp-like syntax for HOP; we have hand edited almost all syntactic
descriptions in this paper to an easier-to-understand higher-level syntax.)

Since topologically regular realprocs (e.g. single and two-dimensional arrays of modules)
occur very frequently in practice, we identify a sub-category of realprocs called vecprocs (fig-
ure 3). Vecprocs in HOP may best be regarded as "arhythmic arrays"-geometricaly regular
arrays in which computations aren't necessarily regular, or rhythmic, as in systolic arrays. A
divide-and-conquer version of PARCOMP has been developed for Vecprocs (section 6).

A realproc is built using one or more absprocs by connecting some of the ports and events
of the absprocs, by composing the external protocols of the absprocs, and by internalizing
(hiding) some of the events and ports of the absprocs. A syntactically sugered notation
(DATANODE and EVENTNODE) mitigates the burden of specifying the renaming and hiding ([29])
information for large systems. A vcproc is essentially built in the same fashion; however a
notation based on recurrence relations is provided to easily specify the regular placement of
modules as well as xegular interconnections among them.

We now examine the specification of an absproc in detail.

2.1 Specifying an Absproc

An absproc is specified by its ports, its events, and its protocol.

2.1.1 Ports and Value Communication

6

p1 El of Cl o
PClC2 ub{EI,E2)

In in I ..

IUS
! * ?c2

2 C
22 2

E.g. of a lattice
fot computing lb

Figure 4: Use of Data Assertions and Queries for Value Communication

The mechanism of synchronized communication as used in 126] does not accurately model the
value communication in hardware systems. As an example, consider figure 4 which depicts
a system consisting of two producer processes P1 and P2 that can communicate with two
consumer processes Cl and C2 over a bus. In this system, it is perfectly acceptable to seek the
value on the bus while there are no simultaneous writers, or vice versa. (The former case could
arise in VLSI where the bus has a "pull-up transistor", for example.) It is even permissible to
have two simultaneously active data assertions (say, with compatible "strengths" [5]) on the
bus.

In HOP, value communication is performed through a mechanism called data assertions
and queries. A data assertion, written as ! p=E , binds an individual variable p representing the
output port to the value E at the time the data assertion is made. In general, data assertions
are of the form 1p=E until *, where e is a future event, where the until operator has the
same meaning as the until operator of temporal logic. (Events are discussed shortly.) The
lack of -1 assertion can be modeled by the assertion I p=Z, where Z denotes high impedance.
(For a bus with a pull-up transistor, the assertion ipsveaki may be used.)

A data query, written as x=?q, binds z to the value bound to the input pot q at the time
the query is made. Multiple data assertions (as in bus connections) end up asserting the least
upper bound (LUB) of the asserted values on the port. For handling multiple data assertions,
the type of values communicable via ports in HOP must be organized into a strength lattice
[5]. For example the bit type of HOP includes the weakest value Z (high-impedance), truth
values T and F, an unknown value U, and the most dominant value E, error. T,F, and U are
incomparable amongst themselves and lie in-between Z and E. This lattice may also contain
other values, such as weaki and veakO.

The above mechanism of data assertions can be extended for modeling bidirectional devices
such as pass transistors, ignoring threshold drops. This is done exactly as done in HOL[6],

7

by asserting that the source and drain nodes are have the same value if the gate is held at
T. Thus, data assertions and queries permit the relational style of specification (i.e. non-
directional interactions) for modeling bidirectional devices.

Advantages of Data Assertions and Queries

By having two processes interaction mechanisms (events and data assertions) we have es-
sentially separated synchronization from communication. We now show through an example
that this separation is advantageous for hardware modeling. Consider a counter with two
commands reset and up that are triggered via events with the same names. After the counter
has been subject to the reset event and until it is subject to the up event, it asserts a data
of 0 on its output port. The process that is responsible for the reset and the up events can,
after it has applied the reset event (but before it has applied the up event) safely assume that
the output will be well-defined (and equal to zero) and sample this output as many times as
it wishes, without any participation of the counter. In contrast, if value communication were
bundled up with rendezvous-as is the case with CSP, CCS, and Circal, the counter would
have to actually rendezvous, causing the counter process to make progress in its computation.
The writer of the counter process thus has to anticipate all possible places where such ren-
dezvous are possible, and make provisions for them in the specification. Our experience is that
this renders hardware specifications unnatural and more complicated. In contrast, with data
assertions, once the counter has asserted 0 on its output, it has "discharged all its duties".

The spirit in which this extension to communication mechanisms was made, is similar to
the extension made by Martin to CSP to include Probes [24]. Both these mechanisms show
that concurrency constructs developed for concurrent software modeling may not be the best
possible ones for hardware modeling.

2.1.2 Events

Events are of two kinds: input, and output. An input event e (written Is) denotes a condition
that a module senses via wires. An output event e (written 0e) denotes a condition that a
module generates via wires. Most modules have, at every point in time, a set of events GE
("good events") that would steer the module into well defined modes of activity. Modules also
have, at every point in time, a set of events BE ("bad events") for which they do not have
any useful behavior defined. We call the GEs at every point in time as the "synchronization
points" of the module.

Events help in making implicit synchronization points explicit. For illustration, consider
a clocked synchronous system supporting multiple operations. In traditional designs of syn-
chronous systems, the completion of an operation is not explicitly notified, but is tacitly
assumed after the elapse of a certain interval of time from the start of the operation. However
this approach is worse than hard-wiring literal constants in programs leading to programs that
are hard to debug or modify. A better approach would be to encourage the writers of module
specifications to "highlight" these synchronization points by introducing events. These events
may be thought of as being implemented by fictitious control and status wires.

Events have a conceptual reality even at very early stages of the design; however they attain
implemcntational reality (e.g. "should an event be represented in unary, or in binary?", etc.)
only much later. The latter decision is influenced by the nature of the controller, and this is

8

typically decided much later in a design life-cycle.
Some of the advantages of using events are:

1. It becomes possible to statically check for sequencing errors. We show some examples
in section 4.

2. It highlights the allowed modes of usage of a module. Hardware specifications must not
merely attempt to model hardware as it is; rather they must model hardware as it is
expected to be used. Hardware systems have astronomically more useless combinations
of inputs (as well as sequences of combinations of inputs) than useful ones.

3. As digital designs evolve, the events that were originally thought to represent fictitious
control wires may be implemented as combinations of control signals and clocks. Combi-
national logic necessary to decode these combinations and raise the corresponding input
event will be tacitly assumed, and not modeled explicitly. This is of advantage on two
occasions: (i) when these encodings haven't been decided; (ii) in later stages of a design,
when these encodings would be excess baggage to carry around.

4. Event connections between modules is achieved via renaming. The actual implemen-
tation of renaming is through combinational logic that translates a condition in one
module to a condition in another. This could pave the way for the synthesis of "glue
logic" that connect modules. This connection between a language operator (renaming)
and its hardware interpretation (glue logic) is natural.

2.1.3 Data Path States

In the specification of an absproc, the data path state of the system being specified can
be modeled using an appropriate high-level ADT. In our experience, (and as illustrated by
the Roll Back Chip [12)), the use of ADTs having simple definitions can make reference
specifications far more reliable and easier to understand.

2.1.4 The Timing Model

Time is a way to order events. In HOP, processes are lockstep synchronous. Therefore the
time of every process advances at the same rate, and thus the event ordering we have can
be described via three relations: simultaneous, before, and after. A HOP specification may
or may not refer to a central clock depending on whether it models a clocked synchronous
system or a unit-delay combinational system. Currently we do not have the ability to model
some subsystems at the unit-delay combinational level, and the remaining subsystems at the
clocked level. We hope to add this capability later on, by specifying clock periods to be fixed
integral multiples of unit-delays (an idea proposed in [19]).

In later versions of HOP, we will provide a "clock library", i.e. an expandable library
of various clocking schemes. Each entry in this library would specify a clock generator of a
certain kind; for instance there would be a two-phase clock generator in this library.

2.1.5 An Example of an Absproc: A Pipelined Memory

9

-- This is a coment.
ABSPRDC HEM [address.size, data-size : int -- Note-O

TYPE
addressType - 0 .. address-size - 1
dataType - 0 .. data-size - I
memoryType - array[addreseType] of dataType

PORT
?din, tdout : array Edata.sizej of bit
?ain : array [address.size] of bit

EVENT
Isnop, Iread, Xrite a TBD

PROTOCOL
HEM Eu : memoryType] C-

Inop -> EM Ns
I Ivrite, va-?addr, vdu?din -> HEM [vrite(us,va,vd)]
I Iread, va=?addr-> MEMIms, va) - Note-1

MEMI [ms : memoryType, oa : addressType) <=
Imnop, !dout-read(ms,oa) -> HEM [as]

I Ivrite, na-?addr, vdu?din,
!dout-read(ms,oa) -> HEM [-rite(msna,vd)]

I Iread, na-?addr, !dout-read(ms,oa) -> MEMlEms, na)
DEFUN
vrite :: m : memoryType, a: addressTyps, d:dataType -> al : memoryType

IF (> addr memSize)
(print "Illegal memory address")
(error-obj neuType) -- Note-2

ELSE (update-vector semType a a d) -- Note-3

read :: m : memoryType, a: addressType -> d : dataType
IF (0 addr nesSize)

(print "Illegal memory address")
(error-obj int) -- Note-2

ELSE (index-vector meuType a a) -- Note-3

END MEM
-- Note-0 : Upper and Lover Cases are Treated the Same in HOP.
-- Note-1 : write (defined in DEFUN) computes the new data path state.
-- Note-2 : error-obj is supported for nemoryType by our ADT library
-- Note-3 : index-vector and update-vector supported by memoryType
-- which is defined in ADT Library.

Figure 5: Specifications of a Memory

10

Iwv a eodo

-(m ,w,.)!

Figure 6. Depiction of the PROTOCOL Specification of MEM

Consider memory module MK which has an address input port ?addr, a data input ?din
port, and a data output port !dout. It can, in its "quiescent state", entertain events Inop,
1write, and Iread, each of which implement the commands nop (no op), write, and read.
MEM is pipelined thus: the delivery of the result of a read request is overlapped with wait-
ing for the next command. Operation write as well as operation nop (no operation) aren't
pipelined.

Let us study figure 5. The header declares two size parameters. The PORT section declares
the I/O ports. The EVENT section defines three events, and equates them to "To Be Defined"
(TBD). Thus, the designer of MEM doesn't yet care about the encodings of the control inputs
as well as clocks (if any). He/she assumes that Iwrite, Iread, and Inop are three control wires
coming in.

Consider the PROTOCOL section. This section can always be depicted as shown in
figure 6. This is because HOP processes are finitely representable processes (that is, they
have a finite-state control skeleton, and this control skeleton can be annotated ("decorated")
with data path state changes and port value assertions.) These annotations are done in a
purely functional notation. The functional notation improves the readability and conciseness
of specifications considerably.

The functional expressions used in the PROTOCOL section are defined in the DEFUN
section and/or in the ADT library. Since the ADT library is implemented using object ori-
ented techniques (our technique: "generic types are classes"), functions are overloaded and
dispatched correctly. Besides, subtyping is available for free through Class inheritance. The
data types support both immutable and mutable constructors. We are currently implement-
ing the in situ evaluation technique [13] to use mutable constructors whenever possible, while
preserving the referential transparency of HOP functional expressions.

Let us study the text of the PROTOCOL section. This section is also depicted in fig-
ure 6. In this figure, we have annotated the transitions with current events, data queries
and assertions, and the next data path state; the next data path state is shown only if it is
different from the current data path state. Process MEM begins in control state EM and in
datapath state us. It offers a choice of three events, lanop, Xrito, and lurite. If nnoe of
these events is asserted externally, the behavior of M is undefined. Event Innop (rcalized

II

by the unasserted combination of the read and write controls) causes HMN to go back to its
top control state; event lwrut when asserted from outside must be accompanied by data
assertions va on the ?addr bus, and vd on the data bus din. It causes DEN to go back to
the control state DN however its datapath state changes to write (as va, vd). Event Iread
must be accompanied by a data assertion va on port ?addr. The next control state attained
is DE.1, and the next data path state is a pair [as.vaj.

In control state KEM1, process MNI is in data path state [Us. oaJ. It again offers the choice
of three events. However note that while waiting here, the data assertion I dout-read (as, oa)
is made (this is the pipelining effect). This assertion corresponds to the result of the previously
requested read. A Inrit, or Innop takes MDEI back to MEN; however while reads keep coming,
KEiI goes back to am1.

If this memory were to be used in a clocked system, the events lwrite, Iroad, etc. would
be generated at the appropriate clock phases. Thus, details such as multiphase clocking would
be described in the EVENT section of an ABSPROC by replacing the "TBD"s by boolean
expressions involving input control wires and clocks.

We assume that lZnop is a special event that is asserted if none of the other events are
asserted. Such an event exists in most modules, and should be defined to be the "unasserted
combination of control+clock inputs".

2.2 Specifying Realprocs and Vecprocs

A realproc specifies a system's realization. As an example let us use the memory unit in
figure 5 to build a stack using an absproc CTR to implement the stack pointer and a controller
SCTL to control the stack. The design of the stack would be specified by writing a realproc
specification, as shown in figure 9. This specification captures the schematic shown in figure 8.
Let us now discuss the sections that are important to highlight the roles played by a Realproc.

In the PORT and EVENT sections, the external ports and events of the realproc are
declared. All other ports and events are assumed to be internal, and hence hidden from the
outside world.

In the SUBPROCESS section of a Realproc, previously specified abs/real/vec processes
are instantiated to the required sizes as well as types. For example we could now instantiate a
generic stack to be a stack over bytes. The subprocesses themselves are described in figure 7.
We present only the PROTOCOL section of the subprocesses. In the CONNECT section,
interconnections between ports as well as events among the submodules, and between the
submodules and the external ports/events of the stack are specified. Semantically, connections
are treated as renaminp, in the style of [29]. That is, connected entities are renamed to
common names that are unique.

Let us look at the first two lines of the DATANODE subsection of the CONNECT section.
(The remainder of the realproc is similar.) The node that connects ?cdo of MEM and ! cdo
of CTR is hidden. The ?din port of MEM connects to din of the stack.

12

CmR Ccs) <* Icsop, Icdonce -) CTR ECc.
I Iload, vdinuftdi -)CTh Evdin3

1up. lcdoncm - CTR Cedd~ces))
IIdomn, tcdoucs -3, CmR (subl(cs)3

Moewnhua

Iod, a CS i

SCTL (- Isp uno.Onp)ST

I reet Onp, co)Ood OIlno) C

ICL< Ipush, Oinnop, Ocnop -)OpS DnpCTDrteLco

-> SCTm
IIpop, Omnop, Oenop -) down, Omnop -)SCTL
IItop, Omnop, Ocnop -)Dread, Dcnop -)Dinop, Ocnop ->SCTL

-- Note: All the ''nop'' events have to be specified in the present version
-of HOP. These could be implicit defaults, in later versions.

IsnoepIr2eO Onop

Fiur : taks umoe: TRAnu/ownoune;ST:SakCnrle

Ocn13

CTR MEm

Figure 8: Schematic of the Realproc of a Stack

3 Semantics of HOP

3.1 An Operational Semantics for HOP

In this section, we provide an operational semantics for HOP, using many of the conventions
presented by Plotkin [33] for writing operational definitions. In addition to describing HOP
unambiguously, these rules form the basis for implementing design tools based on HOP. For
instance, PARCOMP is written by following these operational rules. Towards the end of this
section, we also briefly touch upon the subject of viewing HOP specifications as Temporal
Logic formulae.

It is a common convention when providing semantic definitions to take an abstract svntax
of the language in question. The (hopefully obvious) translation from the real syntax to the
abstract syntax is not discussed. Also, we do not have space here to summarize the style of
writing operational definitions as presented by Plotkin [33], but let us capture the main idea.
When writing operational definitions in this style, we try to provide definitions directly using
the syntax of the language, through certain 'symbol pushing' rules. These rules are to be
justified independently using a denotational or axiomatic semantics; however once so justified,
the operational 'symbol pushing' rules which are usually much simpler can be used in the
day-to-day use of the semantics. This is precisely our approach. This is why we have provided
a temporal logic based semantics for HOP to match the operational rules presented here. A
brief discussion appears at the end of this section. (Readers who find this section hard may
cursorily read it.)

The operational meaning of a HOP process is its transition relation 4= Proc x act x Proc
where the domain of actions for a process is act and that of processes is Proc. This relation
is defined via structural induction using the notation A where ante is an already defined
HOP process (the "antecedent"), and conse (the "consequent") introduces the next syntactic

14

EALPROC stack [<various size t type parameters),]
PORT

?cdi, ?din, Idout : <suitable types)
EVENT

Ireset, Zpush, 1pop, Itop, Inop a TBD
SUBPROCESS -- Note-4

MK : mea ECactual size parameters)]
CTR : ctr [<actual size parameters))
SCTL : acti

CONNECT
DATANODE
-- lote-I
HIDDEN CONNECTS ((HEM ?cdo) (CTR tcdo))
?din CONNECTS ((HEM ?din))
?cdi CONNECTS ((CTR ?cdi))
Idout CONNECTS ((EM Idout))

EVENTODE
-- Notes-2,3
HIDDEN CONNECTS ((MENl Imnop) (SCTL Omnop))
HIDDEN CONNECTS ((HEM Iread) (SCTL Oread))
HIDDEN CONNECTS ((EM lIrite) (SCTL Owrite))
HIDDEN CONNECTS ((CTR Icnop) (SCTL Ocnop))
HIDDEN CONNECTS ((CTR Iload) (SCTL Oload))
HIDDEN CONNECTS ((CMTR up) (SCTL Oup))
HIDDEN CONNECTS ((CTR Idown) (SCTL Odown))

Ipush CONNECTS ((SCTL Ipush))
Ireset CONNECTS ((SCTL Ireset))
Ipop CONNECTS ((SCTL Ipop))
Itop CONNECTS ((SCTL Itop))
Inop CONNECTS ((SCTL Isnop))

END stack
--Note-I: Each line of form <eztpor t/<hidden) CONNECTS <ports>
-- Mote-2: Each line of form <eztevent)>/hidden) CONNECTS <events>
--Note-3: Currently we have to specify even "obvious defaults".
-- Later such defaults (such as unasserted values of events etc.)
-- will be automatically provided.
-- Note-4: In general module instance names and module type names
-- are different. Here they are the same. E.g. SCTL and sctl.

Figure 9: Realproc of a Stack

15

Ie,le * le (1)

Ie,Oe = Oe (2)
Oe, Oe = Oe (3)

Oidle, e =o e (4)

1p = E 1 , !P = *2 !p = bu(F4,E-2) (5)

Figure 10: Definition of Action Product in HOP

category of processes that has not been defined so far.

3.1.1 Action Product

Action product captures how simultaneous actions (events and data actions) interact.
An input event le represents a logical condition that is awaited (at some time) by a module.

An output event Oe represents the assertion of a logical condition at a particular time instant.
Event product, written el, e2 captures how two simultaneous events interact.

As an example, the rule le, Oe z* Oe of figure 10 says that if a module awaits an input
condition Ie and simultaneously another module asserts an output condition Oe, the result
is as if Oe is alone produced at that moment. One may ask "what happened to le"? The
answer is: "it got satisfied by the assertion Oe"; in other words, le got synchronized with 0e.
This fact, when taken along with the way in which the rules of Hiding are defined later, will
show us that the process that was awaiting Ie will make progress.

Data actions have only one simplification rule defined for them by action product: when
two different data assertions !p = El and !p = E2 are made, the resultant value on the port
!p is defined by the function [ub(E1 , £2). The lub function computes the least upper bound of
its two arguments over a value lattice. (See figure 4 for an example.) A complete definition
of the action product operator is given in figure 10.

3.1.2 Definition of the Transition Relation -M

In this section, we define the transition relation by structural induction. Before these defini-
tions are applied to a realproc or a vcproc, all the port and event names in their submodules
are assumed to be renamed so as to be distinct. Abo every compound action used in a defi-
nition is assumed to have been reduced to an irreducible form by repeated applications of the
action product operator ','.

Process STOP

STOP is the simplest of HOP processes. It has a null transition relation; i.e. it always remains
halted.

A finite process is defined to be one that will become STOP in a finite number of steps.
A finite process does not usually represent any practically useful hardware system. Therefore
if PARCOMP results in a finite process starting from non-finite processes, there is room for

16

suspicion that there are sequencing errors in the system. When none of the input events in
the branches of a CHOICE process P are synchronized, and when these input events are all
hidden, process P is turned into a finite process. This can happen (for example) due to the
erroneous sequencing of control inputs.

Sequential Processes

Action: (ca -. P) -i P
If P is a process, ca --. P is a process that first performs the compound action ca and then

behaves like P. Sequential Processes are a special case of deterministic choices where there is
exactly one choice available.

Deterministic Choice

Det-choice: (ji cai - P) -!4 P.
A process P =I1 cai --# P, where i ranges over an index set I is one that offers a deter-

ministic choice consisting of the compound actions ca, during its first computational step. If
choice cm is accepted, P continues to behave like PM.

If I has more than one element, then there must be an input event e, present in each ca,.
Since the es govern the selection of one of the alternatives of the choices, the es must have
pairwise mutually exclusive definitions for their control encodings.

Adding Actions To Initials

If P is a process, cal, P is a process which adds cal to the initials of P.

Add-to.initials: -

cl,P -- P'

Hiding

"Hiding an event e" is a shorthand for saying that both Je and Oe are hidden from a process.
Rule Hiding-sync considers the hiding of Oe. Oe is replaced by Oidle.

Hiding-sync
lide e in P ",0o-o/] Hidse in P'

The notation "[new/old]" is used to mean that "new" replaces "old".
Hiding Je from a process prevents it from synchronizing on this event. This can be captured

by pruning those branches of the synchronization tree that are labeled by le:

Hiding-unsync e e cal
(Hid. e in P) 4 (Hid. c inP")

Hiding a data output port removes data assertions made on that port from the current
compound-action of the process. This would affect those processes that perform a data query
from a connected port at the same time:

17

Hiding-dout
Hide p in P H ide p in P'

Hiding a data input port causes those variables that would have been bound by a data
query on this port to remain unbound:

Hiding-din

Hide p in P -!4 Hide p in P'with z free in P'

Renaming

Processes are made to interact with each other either via events or via data actions (da) on
ports by renaming their individual event and port names to common names:

Renaming-e
. P,

Rename e to el in P -f- Rename e to el inP'

Renaming-port P ±" P', d4 uses p

Rename p to pl in P - Rename p to pi inP'

Parallel Composition

The parallel composition operator II models the process of realizing a system by putting
together several sub-processes, and permitting their interaction through events and ports that
are connected.

Parcomp -pl--Lp',e (-IN Q(PIIQ) - (P'IIQ')

After performing parallel composition according to the above rule, we may simplify the
result by using the following rule (if applicable). This rule captures the effect of value com-
munication:

p (z,),! E),cep,

Value Communication During Parallel Composition -P P
P (I'0G) PF [E/.T]

Conditionals

HOP processes are usually defined as process schemnas P[dps], where for each value of dps we
have one specific process. dps usually represents the data path state of the process. We have
the notion of conditional processes in HOP that allows us to specify the behavior of a process
based on its dps variable. Thus we may define a process P as:

P[dps] 4- if p(dps) then P1[f(dps)] else P2[g(dps)].

After reducing the predicate application p(dps) to true or false, one of the following rules
would apply:

IS

P1 -!4 P' P2 -!4 P'
Conditional (if true then P1 else P2) -- # P' (if false then P1 Ole P2) -- P'

Recursion

A collection of one or more processes may be defined recursively. Since only tail-recursion is
allowed, recursion can be modeled as iteration.

3.2 Section Summary

It is possible to view HOP as stylized formulae in Temporal Logic. For instance the specifi-
cation in figure 11 can be modeled in temporal logic as shown in figure 12.

P Eel <= 1e1 -> fdout = 55 -> P [f(s))
I 1e2, z=?din-> Q [gCsz)]

Figure 11: An Example HOP Specification

P(s) - D((el D Q((!dout = 55) A OP(f(s))))

A(ie2 D (x =?din A OQ(g(s,z))))

A(not(lel) A not(le2)) D DERROR).

Figure 12: Temporal Logic Equivalent of the Example HOP Specification

In the Temporal Logic specification, we treat port names ?din and !din as individual
variables. Renaming and hiding are modeled in an obvious way. The effect of simultaneous
data assertions and queries on a bus can be handled by first computing the LUB of the asserted
values (over the value-lattice of the data items asserted), and then binding this LUB to the
variables involved in all the queries on this bus.

One benefit of using pragmatically oriented HDLs that have a clean semantics (like HOP),
as opposed to directly using universal functional/relational calculii, is simplicity. HOP pro-
cesses may be viewed as a collection of communicating automatons. The operational semantics
provided in this section define the rule of communication, and they may be understood syn-
tactically. Milner [28] and Plotkin [33] have extolled the virtues of this approach.

Another major benefit of using HDLs is the following. Useful "idioms"-commonly oc-
curring patterns in HDL descriptions--can be identified by trying out a large number of
examples. Then we can identify a subset of Temporal Logic (or another formalism) that
matches these idioms. The advantages of identifying such subsets of (inherently undecidable)
theories is obvious-we can make a focussed attack on the problem of verification and testing
of hardware.

19

4 Illustration of PARCOMP

4.1 What Exactly Does PARCOMP Do?

PARCOMP takes as input a realproc or a vecproc and produces as output an absproc. It works
by symbolically simulating all possible interactions between the subprocesses of a realproc or
vecproc. PACOMP implements the operational rules of HOP presented in section 3.

The absproc inferred by PARCOMP captures, via symbolic expressions, the behavior of
the realproc or vecproc for all possible starting states of the submodules, and for all external
inputs. The text of the inferred absproc can be manually studied to see if the system behaves
w understood by the designer. Thus, PARCOMP greatly facilitates the understanding of the
collective behavior of a collection of synchronous systems.

In addition, PARCOMP throws away all of the unused capabilities of a system. Consider a
system built using three modules A, B, and C, where C is the controller for A and B. Though
A and B may individually support (say) 5 operations each, C may actually use only (say) 2
each of their operations. In addition, of these 2 operations used, C may sequence them only
in a small number of ways-out of the myriads of possible ways they may be sequenced. In
other words, C implements only some of the astronomically large number of possible micro-
routines. Such under-utilization of system capabilities is the rule, rather than the exception,
in hardware. PARCOMP "distills out" only the used modes of behavior by capitalizing on the
event hiding information supplied by the designer. Thus, the behavioral descriptions inferred
by PARCOMP contain just the right amount of information, and nothing more.

In addition to distilling away unutilized modes of behavior, the Hiding.unsync rule reduces
the time complexity of PARCOMP. The worst-case time complexity of PARCOMP is propor-
tional to the number of control state tuples actually generated. By pruning away as many
control state tuples as early as possible, these control state tuples as well as their successors
are never visited.

Finally, PARCOMP can be used to save the time of simulation; we can perform a "pre
simulation" of the tester and the testee using PARCOMP, and run the resultant process.
These computational-effort saving measures are believed to be new.

4.2 Illustration of PARCOMP on the Stack

Given the above stack realproc specification and given the specifications for CTR and SCTL
shown in figure 7, we can use PARCOMP to infer the equivalent absproc specification STACK
shown in figure 13. (Only the PROTOCOL section of the inferred process is shown.) This
description was obtained automatically, using our implementation of PARCOMP. Inferring the
behavior of the stack takes less than ten seconds of elapsed time running on an HP-Bobcat
running compiled HP Common Lisp.

The inferred PROTOCOL specification asserts that the STACK system offers a choice of
events Ireset, Ipush, Itop, Ipop, and Inop.

Let us study Itop. After asserting this event, the external world (say, the "tester process"
of the stack) has to idle for one tick. No event is entertained by the stack (signified by the
absence of any input events following Itop), as it is internally busy. During the second tick, it
asserts the data value read(ms, ca) on the !dout port. This symbolic expression confirms that

20

STACK c.... ca
Ireset -), di 0 ?cdi -.), STACK Cd...)

I Ipush -;P Oile vde?413 -) STACK Caddicm). write(= .tdd(c).vd)3
I Itop -3, Oile -~Idoularead(...cs) -), STACK Cc...)
I 1pop -) Odae - STACK Csubl(cv). w3)
1I mop -)STACK Cc....)

19no)
ups (c81

read ~ ~ ~ Ew (m.t)08))i ld

1.,l (no up c)))

Figure 13: Abero Auomtcpl 00]rdfomskelusn CM

01

the stack would output the correct result on port !dout following the top command. Finally,
the STACK co ,s) process continues to behave like STACK Ecs,us itself, meaning that the
STACK process did not suffer any state changes.

Let us study the push operation. The external world is expected to supply the item
to be pushed two ticks after it applied the Opush trigger that matched with the Ipush
event. If this value were vd, then the future behavior of STACK would be like that of
STACK[addl(cs),write(msaddl(cs),vc.)]. This symbolic expression shows that the push op-
eration was implemented correctly. This is because the counter state has advanced from cs
to add1(c), and the memory state has advanced from as to write(a.addl (cs) .vd). In-
formally, the stack pointer was incremented, and the memory location pointed to by the new
stack pointer was written with vd.

The other operations are similarly correct. (Note: While doing the reset, the initial stack
pointer value has to be fed from outside via ?cdi.)

4.3 How Does PARCOMP Work?

4.3.1 Lockstep Cross-product Automaton

Our explanation of PARCOMP would be greatly facilitated by introducing the concept of
lockstep cross-product automatons. Given two DFAs A and B, a lockstep cross-product au-
tomaton (LCA) of A and B, written ica(A, B), can be obtained from A and B by the following
algorithm:

(Basis clause): If Ao is the initial state of A, and B0 is the initial state of B, then the
pair < Ao, B 0 > is in lca(A, B).

(Inductive clause): If state < A,, B, > is in lca(A, B), and there is a directed edge Ei,
going from A, to a state Aj in A, (and likewise Fj is a directed edge going from state B,
to a state Bj in B), then < Aj, Bj > is in lca(A, B). Further, the edge EFi. is introduced
in lca(A, B) going from < Aj, B, > to < Aj, B, >.

(Closure clause): There is no other state or edge in lca(A, B).

Example: Consider the state diagrams in figure 14 to be DFAs, with state 0 being the starting
states of A and B. Then, lca(A, B) contains all the 25 states in the cross-product of A and
B. On the other hand if the self-loop at state 0 of process B were to be absent, then it will
contain only the five states 00, 11, 22, 33, and 44. The edges in lca(A,B) would then be:
00 -4 11, 11 -- 22, 22 -- 33, 33 --# 44, 44 -" 00. Thus, we conclude that the number of states
in Ica(A, B) is less than or equal to the product of the number of individual control states in
A and B.

PARCOMP works by attempting to create the LCA. However, as wt show below, it actually
doesn't create the entire LCA graph--often it creates only a small portion of the LCA graph.
In this section, we discuss only the version of PARCOMP that doesn't use the cond construct.
The cond construct is considered in section A.1.

4.3.2 An Illustrative Example

22

f Ne a Ke Idor) fd He (yi)

fNS.A (as-A u (as r)]

S.9(ls Ioh)) Process AB

Fiue1:Prcse ,),adA

231 i

Ido I #l

A tU-_ .oxp
Id o 2 *? X l:

Oar Idor

Figure 15: The Realization of the System AB

We illustrate PARCOMP on one example that has been specially constructed to involve most
of the interesting cases that arise during PARCOMP. (A rigorous specification of PARCOMP
is presented in section A.1.)

The Structural Details

Two processes A and B are connected to form a system called AB, as shown in figure 15. The
0.l event of A is unconnected as well as hidden; hence it is effectively ignored throughout.
Event D of A is conneced to event I. of B, and hence whenever Ie is offered by B and 0. is
asserted by A, the events would synchronize. This event is also exported as event Der of AB.
Thus whenever 0. is asserted by A, event 0er would be seen asserted outside AB.

Process A has a data port !do connected to port ?di of B. Since this connection is hidden
within AB, the data assertions on !do will not be visible outside AB. A also has an output
port ! do2 that is connected to input port ?di of A, output port ! do of B, and output port !do
of AB. The effects of these connections will be discussed momentarily. B has an input port
?hid that is connected nowhere; the effect of querying through this port will be of interest.
Finally, B has an input port ?exp that is exposed outside AB; the effect of B's query on this
port will also be of interest.

The Behavioral Details

The above structural connections show the potentials for interaction through events and data
ports. Whether these potentials are actually used would depend upon the protocol specifica-
tions of A and B.

Figure 14 depicts the PROTOCOL sections of processes A and B. At time 0, process A is
in control state 0 and has data path state [as]. (Data path states are always sequences of
one or more items, and we write them within square brackets, to mimic the syntax used in the
textual version of the HOP specification.) While in control state 0, A keeps an output event

24

0. asserted. It also asserts the data value Ido-F(as) so long as it stays in control state 0. It
instantaneously jumps to state 1, when time instant I arrives. In control state 1, it asserts a
data item, and also queries port ?di to obtain a value for a local variable y. Until it is bound
again, the value of variable y will represent the value on port ?di at time 1. Process A then
moves to control state 2. Further behavior of A can be similarly understood. We indicate
the state 0 of A using a darker circle because it corresponds to the explicitly named process
"AiasJ] in the textual description of A.

Let us consider B. It offers a deterministic choice (as explained in section 3) between events
1.1 and 1e in state 0. The former transition will be taken if event I*1 is asserted (from outside
B), and event Xe is not asserted. The latter transition will be taken if event Ie is asserted,
and event el is not asserted. (The events guarding the "arms" of a deterministic choice are
mutually exclusive, by definition.) If I* is asserted, the data query z=?di will be made. After
this query, B goes to control state 1. From control state 1, it goe to control state 2, and
its data path state changes to [bs, z3. State 2 of B is shown using a dark circle because it
corresponds to the explicitly named process B1 [blst]. Note that we show the "next data
path state" only if it changes. B starts from control state 2 in data path state [bls ,t. This
pair is bound to [bs, x3 by virtue of the data path state change shown along the arc 1 --+ 2.

If processes A and B are coupled using the structure shown in figure 15, and allowed to run
starting them both in state 0, their behavior, as seen from outside AB, will be that of process
AB in figure 14. This behavior was automatically deduced using the PARCOMP procedure.

Operational Rules Invoked in Deducing Process AB

The rules Renaming-e and Renaming-port of section 3 are used to model connections between
ports and events. (In our narration below, we will perform these renamings "as and when
needed" during explanation.) Since A and B interact, we invoke the rules Parcomp and Value
Communication During Parallel Composition. Finally we invoke the rules of hiding, to take
into account the hidden events and ports.

We now discuss some specific instances of these rules, with respect to figure 14.

* PARCOMP can be thought of as a nested iterative procedure where the outer loop
attempts to generate the LCA. The inner loop performs action products of events and
data queries/assertions, obtaining simplified events and data queries/assertions. These
are used to annotate the edges of the LCA, thus obtaining the inferred absproc.

To clarify this, consider the move of B from 0 to 0, and of A from 0 to 1. We obtain the
LCA edge 00 --+ 10. Label this edge with the set of actions obtained from the 0 --4 1
edge of A and the 0 -- 0 edge of B.

(Convention: We show these actions prefixed by "A:" if they are caused by A, and "B:"
if caused by B. If caused by A and B collectively, we prefix it by "AB:".)

This compound action is:

B: Iel, A: De, A :!do =F(as) --- (I)

The other edge in the LCA is 00 --* 11, and is labeled by

A : De, B : le, A :!do = F(as), B :x =?di --- (2)

25

9 Consider equation (1). This equation is irreducible under the action product operation
(the rules in figure 10). Further, it contains the event Ii that is unsynchronized and
hidden. This represents a possible move of B that will never materialize. So we can
invoke the rule Hiding-unsync, and prune away this possibility. Thus, we delete the
00 -. 10 edge from the lca(A, B).

This step accounts for the practical efficiency of PARCOMP. In the current example,
this one pruning step prevents the generation of the following control state pairs of AB:
20, 30, 40. This is because 20, 30, and 40 are all successors of 10, in the LCA of AB.

* Consider equation (2). It is reducible through equation 2 of figure 10. It reduces to

AB : Oe, A :!do= F(as), B : x =?di - - - (3)

This fact represents that Io synchronizes with 0.

Ports !do and ?di are connected. Since connections are modeled via renaming to a com-
mon name, let us rename ?di to ?do. Now we can invoke the rule value communication
during parallel composition, and simplify (3) to:

AB : Oe, AB :!do = F(as) - - - (4)

and also generate the substitution [F(as)/z] to be applied to the "rest of the parallel
composition". This shows that the variable z of B would be bound to F(as), thus
showing that a value communication has occurred.

* Equation (3) contains Do that is not hidden-it connects to the event Der of AB. Thus
we see Cr being asserted by AB during the first transition. However, port ! do is hidden,
and so we do not see this data assertion being asserted by AB. The value communication
does happen, albeit internally.

* PARCOMP proceeds thus, and re-encounters state 00. It now has to compute PAR-
COMP of A and B which are (respectively) in data path states NS-A(...) and NS-B (...).
However we have already computed the PARCOMP of A and B for data path states (re-
spectively) as and bs-these are free variables, and hence more general than NS-A (...)
and NS-B (...). Hence nothing is to be gained by doing PARCOMP again, and so the
algorithm stops.

The other interesting things that happen along the way are:

- The data assertion !dotnlub(G(x),as) is produced by AB at time 1, as a result
of the "collision" of the data assertions Ido2-as by A and !do=G(x) by B. The
"resultant" assertion is computed using the action product rule 3 of figure 10.

- The assertion !dorjF(as) ,H(lubCG(F(as)), as))) made at time 3 is explained
thus: there is an assertion made by B at time 3. This assertion is 3 (t ,z). However
by now, t and z have accumulated value bindings, and these value bindings are
substituted in. Thus we see that the behavior of AB represents the effects of value
communications between A and B in a closed form.

26

lMnop

I vi sa Wi
1wroe (m8 top 08).

down 09))

Ia 'p(cs))

Figure 16: Inferred Behavior of the Stack using an Erroneous SCTL

- A final point of interest is the occurrence of the term UB in the next data path
expression when going from state 44 of AB to state 00. IJ stands for "unbound",
and results from the query that B performed on its hidden port ?hid. This is
obtained formally by invoking the rule Riding-din. So long as this UB value is never
"used", the system can compute along safely. An example would be this: if B were
an OR gate and if one of its inputs is already 1, then the other input could be UB.
(UB will be bound to HOP's HIZ value "Z", or to boolean False ("F" in HOP),
depending on the actual IC technology used.)

5 Experiments with PARCOMP

In this section we present various experiments that we have conducted using PARCOMP.

5.1 Introducing Protocol Errors

We deliberately introduced mistakes into the stack controller and wanted to see if PARCOMP
could detect these errors. Here is a specific experiment: take the process SCTL defined in
figure 7, and delete the Oread event that is generated after synchronizing on event Itop.
PARCOMP is able to detect this as an error.

This is possible because of the following reason. By omitting Dread, the SCTL process
does not generate any of the choices that MEM offers at that moment. Thus the behavior of
MEM beyond this point is not defined. Hence the behavior of the stack beyond this point is
not defined.

The results of PARCOMP with this erroneous SCTL are shown in figure 16. The inferred

27

Fiur 1:Th@PpeoedStckCntole

Orood 8 nod Om o n

8no ,o,,

Absproc has a transition from state 000 to state STOP, which is a dead-end. A STOP control
state in a process is indicative of a design error, because a hardware system's behavior must
be defined for every time instant. Thus when a STOP state is generated during PARCOMP, it
issues a warning to the user. This feature of PARC OMP can help ensure that timing protocols
are mutually compatible. Much like in type-checking, the assumption is that in a majority
of cases only one process would be "wrong" relative to the other; that is, we won't make
"compatible mistakes" in two systems, at the same time.

However note that not all timing errors will be caught in the above manner. It should be
clear that certain errors will not lead to any dead-end control states, but would nevertheless
give rise to erroneous modes of behavior.

I.2 Pipelining the Stack

The inferred behavior of the Stack presented in figure 13 shows that it takes 3 ticks to complete
the push operation. Probing the reasons for this, we see that SCTL is the source of ths time
wastage. It accepts Ipush during the first tick, does Oup during the second, and Ourit. during
the third; then only goes back to state 0.

We can overlap the last ODnt, operation with the awaiting of the next command on the

stack. Doing so, we would have pipelined the stack. The controller used for this pu1rpose
is PCTL, shown in figure 17. After accepting Ipush and performing Oup, PCTL goes into
control state 3. Here while it awaits the next stack operation, it performs the deferred 0Otrite

28

V41fl SICd6

mr s t 011 e4l~s Vd Wfftjm l

Is nop Id02 a ood ()) O

Iese OCS Ovd), vd ad

~~gb(i
.90d i(CS)l

vdou Mod~f
(w it CS)1 00dd l ic) sE

,g d d l (c c0 . (w rod d e (1) lv d d l (S) , d

1POP~~dd 02Im adl)))

Fiii 8 ,fr0Bhvo
fte i1~~S&k(n

htUG CL

009 (wri9

Oldie

Fire19 TopestrPoesfrthlieie tc

lopvpl a adit

Mot a I

Oldie

Old[*

Otop Oldie Opop

Figure 19: A Tester Process for the Pipelined Stack

operation.

Using PCTL and the same old MEM and CTR, PARCOMP infers the behavior shown in
figure 18. This behavioral description shows all the modes of behavior of the stack. We will
study some of these modes in the next section.

5.3 Testing the Pipelined Stack, aided by PARCOMP

How do we know that the pipelined stack is correct? One way is to formally verify it against
a requirements specification. We do not take this approach in this paper.

Let us instead test the pipelined stack, to gain some confidence in its correctness. Let us
describe a tester process in HOP that would apply the following sequence of operations:

resde(stack); push(utack, 1); push(etack, 2); pop(utack) ; top(,tack).

The expected result of this test is 1.
In order to test the stack, we should apply the above sequence of commands observing

proper timings for command invocations, data assertions from outside, and the data query for
the result of the top operation. It is our understanding of the timing as wel] as functionalit.1,
of the stack that we wish to confirm through testing. The tester so constructed is shown in
figure 19.

We can compose the tester and the "testee" (the pipelined stack) using PARCOMP, and
thus obtain a single process that embodies all observable aspects of the collective behavior
of the tester+testee. We can then run this single resultant process. The resultant process is
shown in figure 20. This approach has many practical advantages, and they are discussed in
the following subsections.

30

fa go pal Iresults002e

(wr'It(wrlte(me, &01411(0),1), s*dl()

BUbM (ad dl(add 1(0))))
[Wrlte(WrIte (ma AMi (9), 1),

ad (ad (9)),2),
subi (AUIdd(addi (0)))) do

[writ e (Ina Bddl 0), 1),

Oldie
fwrIft(wrlte (MS ,Addl (0),1),

ad (add? (0)).2),Oli
sub? (addl(addi ()))) write (Ms saddl (0).,?),

di (add? (0)))

(wrlte(wrlte (mS Oaddl (0), 1), (write(write (ms oaddl (0)1,),
add? (addl (0)),2), dl(d 0),,
sub? (addl(addl (0))))]d?(d?(),)

Oldie add? (add? (0)))
fwrlte(wrlte (ms ,add? (0),I),

add? (addl (0)),),
sub? (addlI(add? (0))))

Figure 20: Composition of the Tester and the Testae (the pipelined Stack)

31

5.3.1 Detecting Timing Errors in Tester Processes Statically

PARCOMP can reveal certain timing errors in the tester, relative to the testee. In these cases,
wasteful simulation needn't be performed, and instead the error can be corrected.

5.3.2 Obtaining Symbolic Simulation Results Without Simulation

As figure 20 shows, the inferred process reveals (approximately) how the simulation would
proceed. For instance, it tells us that the final result delivered by the top operation is:

fresult
(READ

(WRITE (WRITE M5 (ADDI 0) 1) (ADDi (ADD1 0)) 2)
(stUI (ADD1 (ADD1 0)))

)

In this simple example, we can readily tell that this answer is correct; for, we can apply simple
algebraic rules of ADD1 and SUB1, to simplify this data assertion to:

resulta
(READ (WRITE (WRITE MS 1 1) 2 2) 1)

This can further be simplified to 1, using the following algebraic axiom of ordinary read-write
memories:

read(write(m, a, d), a) = d.

And 1 was indeed our expected answer.
This opens up the following attractive path towards speeding up functional simulation:

1. Build an algebraic expression simplifier as a part of the abstract data type library.

2. Obtain the "tester+testee" process thru PARCOMP.

3. Extract all the the next data-path state and data assertion expressions present in this
tester+testee. Simplify them using the expression simplifier.

4. Plug these simplified expressions back into the tester+testee.

5. Run detailed functional simulation on this simplified tester+testee.

We also have developed the prototype of a compiled simulator that compiles "tester+testee"
processes into procedural code. This simulator is called the CAPS (Compiled AbsProc Sim-
ulator). (Note: Some of the above ideas may be found in [15] also.)

5.3.3 Building Partial Testers

Suppose we want to supply certain test stimulii "automatically" from the tester process and
some other test stimulii interactively from the keyboard. This can be very easily done in our
present approach. For example, let us assume that the user wants to have control over the first
data item being pushed on the stack. He/she would simply leave out the data assertion ! dotai

32

from figure 19. Running PARCOMP on this "tester+testee" would result in an "unsatisfied
but un-hidden" data query at time 4. When we run CAPS on such an ahsproc, the unsatisfied
data query is turned into a query from the keyboard.

Thus users may selectively add or take away events and data assertions from the tester
process. Thus, a range of testers are possible. At one extreme, the tester does every data
assertion and query, and so the CAPS simulation will run on its own, without user intervention.
At the other extreme, the tester would do nothing, and the CAPS simulator would interrogate
the user for every event and data input. This was a pleasant and serendipitous discovery.

5.3.4 Interpreted Realproc Simulator

Sometimes it may be felt necessary to simulate a collection of processes without doing PAR-
COMP. This need can arise, for example, during the very early stages of a design where
(i) users may want to simulate a proper subset of the subprocesses; (ii) users may want to
get detailed information about the innards of a system. To support this need, we have devel-
oped a run-time version of PARCOMP that is embodied in an Realproc Interpreted Process
Simulator (RIPS).

In the RIPS simulator, the tester and testee are run concurrently, and the action products
are computed at run-time. RIPS is relatively more inefficient than CAPS; however, RIPS
allows many flexible interactions not possible with CAPS. For example, after a few simulation
steps, we can selectively ignore a subset of the modules, and carry the other modules forwards
in simulation. Or, we can add an extra process after a few steps.

5.3.5 The use of Probe Processes

Logic state analyzers are widely used to debug digital systems. In HOP, we can simulate logic
state analyzers. by constructing probe processes.

A probe process is constructed by specifying along its transitions a trace of the sequence
of events and data assertions of interest. Such a trace is similar to a "trigger" specification of
a logic state analyzer. We can then PARCOMP the probe process with the submodules of a
system, and then simulate the system.

Here is a probe process that can be used with the pipelined stack:

PROBE <- lurite -> Ivrit. -> 1vrite -> Iread -> :probeout = ''Success"

The operator -> is an abbreviation for "busy wait until the following input event". This
derived operator is available in HOP, and can be expressed in terms of ->.

If this probe process were to be composed with the pipelined stack and tested using fig-
ure 19, it will sense whether the memory is being subject to three writes and one read. If so it
will print '"Success' ' on the : probeout port. For the command sequence push; push; pop; top
applied by our tester, this trace must manifest on the memory subprocess. Probe processes
may, after sensing the trigger condition, start acquiring data, and may even act like tester
processes by supplying test patterns.

33

5.3.6 Checking for Representation Invariants

Probe processes may be used for flagging the violation of of repmsentation invariants during
the course of operation of a module. Representation invariants [23] are predicates that describe
the consistent internal states of a module. As an example, consider a simple associative
memory (AM) with 4 locations. A representation invariant found in most AMs is: "AM never
contains duplicate entries'. Stated formally,

Vz unry(a.ocsrch(AM, z)).

This says that d, the result of doing an associative search, is always a unary quantity. If the
unary pattern is "0000", it indicates that the search "missed". If the pattern is "0010", it
indicates that there was a hit at location 3. If pattern is "0101", it indicates that z was found
in location 0 and 3; this is erroneous. A probe process to detect this condition is:

NODUP <= Isearch, zusrchdata -W if(unary(z), NODUP. ERROR)
ERROR <a !probeout a ''Error'" ,> STOP

The probe process NODUP samples the Isearch event that triggers the associative search. It
samples the search's result, x, also. Then if z is found to be unary, it goes back to behave like
NODUP. Else it behaves like the ERROR process.

This technique has one limitation: quite often, the entire internal state of a module is not
observable through its output ports. To overcome this limitation, we are investigating the
use of daemons-data driven procedures-that can directly monitor the ADT object states.
Some details appear in appendix A.2.

6 A Divide-and-conquer PARCOMP, PARCOMP-DC

This section shows how we can often reduce the run-time of PARCOMP by exploiting the fact
that it is commutative and associative.

Consider the array A shown in figure 21. It consists of a collection of modules M1 con-
nected in a regular interconnection pattern. For simplicity of explanation, assume a nearest-
neighbor connection that is regular in both the dimensions. Consider the problem of comput-
ing PARCOMP(A); i.e. the composition of all the Ms constituting A. Since PARCOMP
is both commutative and associative, we can split A into two halves, say AT standing for "the
top of A" and AD, standing for "the bottom of A", and assert:

PARCOMP(A) = PARCOMP(PARCOMP(AT), PARCOMP(A,)).

Since AT and A8 differ only in the names of their external ports, we need compute only
PARCOMP(AT). PARCOMP(AD) can be obtained from this, by renaming the ports of
AT to the corresponding ports of A8 .

This division process can be carried down to the leaf cells, as depicted in figure 21.
PARCOMP-DC is often more efficient than PARCOMP. Let us make an approximate cost

analysis.
As discussed in section 4.3.1, the worst-case time complexity of PARCOMP is proportional

to the cross-product of the number of control states in each of the processes, assuming that the

34

A7 AlL AMR

0 is Obtained from.0

via copying and renarming.

Figure 21:. Divide and Conquer PARCOMP

3S

number of events and data assertions on every transition are bounded by a constant. Suppose
for simplicity that array A is square, and has N modules of type M, M has C control states
in it, and that N be a power of 2. Then

cost .parcornp(A) - O(CN).

Suppose that the modules formed during the division process of PARCOMP-DC are M,
ATL, AT, A. Let ncs(M) denote the number of control states in a module M. Further let

C.copying denote the cost of copying the process descriptions (see figure 21). Then

coast.parcomp.dc(A) = O(nca(M)2 + ... + ncs(ATL)2 + ncs(AT) 2 + nco(A)2 + C.Copying).

The above sum has log2(N) terms. Let D be the root mean square (RMS) value of the
number of control states in M, ..., AT, AT, A. Let the cost of copying and applying renamings
to a process description not exceed the number of control states in it.

Then,

cost.parcomp.dc(A) = O(log2(N) x (D 2 + D2)) = O(log 2(N) x D 2).

Firstly we note that D does not tend to increase as the size of the modules grow. This is
a fact of practical systems because when designing a module using several submodules, only
very few of the astronomically large number of sequences of the submodule operations are
actually used. Hence the number of control states in a module is often vastly smaller than
what it could be. (Consider for example the total number of possible microprograms for a
typical datapath .vs. the number of microroutines that are actually ever used!) Thus if D is
close to C and if M is large, then there is a significant payoff by using PARCOMP-DC.

In conclusion, the following additional avenues of research are available for handling geo-
metrically regular, (but perhaps computationally irregular-or arhythmic) arrays:

9 Perform PARCOMP of two modules of the array;
* Study the inferred behavior and see if it is verifiable manually or through exhaustive

simulation.
* The behavior inferred by PARCOMP (or PARCOMP-DC) will have complex if-then-else

functions. Construct tabular functions corresponding to these.
* Use these tabular functions for efficient simulation.
* Try to perform formal verification of the whole array by setting up an induction.

7 Summary of the Paper

We presented a language "Hardware viewed as Objects and Processes" (HOP) for specifying
the structure, behavior, and timing of hardware systems. HOP embodies a simple process
model for lock-step synchronous processes.

We presented the communication primitives of HOP, illustrated HOP through several ex-
amples, and then presented its operational semantics. Several design automation algorithms-
especially PARCOMP-were then examined in detail.

36

The results presented herein were obtained from our implementation of the HOP design
system. Section A.2 presents an overview of this system. It has a working prototype, currently
written in Common Lisp and FROBS [31]. Though we have taken simple examples in this

paper, we have worked out some larger examples as well. Some of these hardware units are

discussed in [12]; many are yet to be published. Links to VLSI design are briefly described in

section A.2.

37

References
[1] T.S. Anantharaman, E.M. Clarke, MJ. Foster, and B. Mishra. Compiling Path Expressions into

VLSI Circuits. u Proeding, of the 18th Sympaium on Principles of Programming Languages,
ACM, January 1985.

[2] Mario R. Barbacci. Instruction Set Processor Specifications (ISPS): The Notation and Its
Applications. IEEE Trsactiona on Computers, C-30(1):24-40, January 1981.

[3] Frederick P. Brooks. The Myhical Man-month. Addison-Wesley, 1975.

[4] M. Browne, Edmund Clarke, D. Dill, and B. Mishra. Automatic Verification of Sequential
Circuits using Temporal Logic. In Procedinga of the Seventh International Conference on
Computer Hardware Deacription Languages, pages 98-113, North-Holland, 1985.

[5] Randall E. Bryant. A Switch Level Model and Simulator for MOS Digital Systems. IEEE
Trunsactions on Computer, C-33:160-177, February 1984.

[6] Albert Camilleri, Michael C. Gordon, and Tom Melham. Hardware Specification and Verifi-
cation using Higher Order Logic. In Procenings of the IFIP WG 10.2 Working Conference
on "From HDL Descriptions to Guaranteed Correct Circuit Designs', Grenoble, August 1986,
North-Holland, 1986.

[7] Tam-Anh Chu. Synthesis of Self-timed VLSI Circuits from Graph-theoretic Specifications. In
International Workshop on Petri Nets and Performance Models, Madison, Wisconsin, August
1987. See also MIT VLSI Memo no.87-410, September 1987, with the same title.

[8] Avra Cohn. Correctness Properties of the Viper Block Model: The Second Level. In 1988 Banff
Workshop on Hardware Verification, Springer Verlag, 1988.

[9] Stephen Garland, John Guttag, and Jorgen Staunstrup. Verification of VLSI circuits using LP.
In George Milne, editor, 1988 Glasgow Workshop (IFIP WG 10.2) on Hardware Verification,
1988.

[10] Ganesh C. Gopalakrishnan. From Algebraic Specifications to Correct VLSI Systems. PhD thesis,
Dept. of Computer Science, State University of New York, December 1986. (Also Tech. Report
UU-CS-86-117 of Univ. of Utah).

[11] Ganesh C. Gopalakrishnan. Synthesizing Synchronous Digital VLSI Controllers Using Petri
nets. In International Workshop on Petri Nets and Performance Models, Madison, Wisconsin,
August 1987.

[12] Ganesh C. Gopalakrishnan, Richard M. Fujimoto, Venkatesh Akella, N.S. Mani, and Kevin N.
Smith. Specification Driven Design of Custom Architectures in HOP. In G.Birtwistle and
P.A.Subralmanyam, editors, 1988 Banff Hardware Verification Workshop, Banf, June 1988,
1988. Invited Paper, to appear as a chapter in a forthcoming Springer-Verlag book.

[13] Ganesh C. Gopalakrishnan and Mandayam K. Srivas. Implementing Functional Programs Using
Mutable Abstract Data Types. Information Procesing Letters, 26(6):277-286, January 1988.

[14] Ganesh C. Gopalakrishnan, Mandayam K. Srivas, and David R. Smith. From Algebraic Specifi-
cations to Correct VLSI Circuits. In D.Borrione, editor, From HDL Descriptions to Guaranted
Correct Circuit Designs, pages 197-225, North-Holland, 1987. (Proc of the IFIP WG 10.2
Working Conference with the same title.).

38

[15] Richard H. Lathrop Robert J. Hall and Robert S. Kirk. Functional Abstraction from Structure
in VLSI Simulation Models. In Proc. 24st Design Automation Conference, pages 822-828,1987.

[16] Matthew Hennessy. Proving Systolic Systems Correct. Technical Report CSR-162-84, Depart-
ment of Computer Science, University of Edinburg, June 1984.

[17) C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, New

Jersey, 1985. Definitive discussion of CSP, circa 1985.

[18] April 1986. Special Issue on the VHDL Language. IE b sv cao &,Tt •

[19] I.S.Dhingra. Formal Verification of a Design Style. In Graham Birtwistle and
P.A.Subrabmanyam, editors, VLSI Specification, Verifiation and Synthesis, pages 293-321,
Kluwer Academic Publishers, Boston, 1988. ISBN-0-89838-246-7.

[20] Steve Jacobs and Kent Smith. TILER User's Guide. 1986. User's Manual Available from the
Univ. of Utah, Dept. of Computer Science VLSI Group.

[21] Stephen Johnson, B. Bose, and C. Boyer. A Tactical Framework for Hardware Design. In Gra-
ham Birtwistle and P.A.Subrahmanyam, editors, VLSI Specification, Verification and Synthesis,
pages 349-383, Kluwer Academic Publishers, Boston, 1988. ISBN-0-89838-246-7.

(22) Jeffrey Joyce and Graham Birtwistle. Proving a Computer Correct in Higher Order Logic.
Technical Report 85/208/21, Dept. of Computer Science, Univ. of Calgary, August 1985.

[23] Barbara Liskov and John Guttag. Abstraction and Specification in Program Development. The
MIT Press, 1986. ISBN-0-07-037996-3.

[24] Alain J. Martin. The Probe: An Addition to Communication Primitives. Information Pro-
cesing Letters, 20(3):125-130, April 1985. An Erratum related to this article appeared in the
August 1985 issue of the Info. Proc. Letters.

[25] John Merk, John Lalonde, and Ganesh Gopalakrishnan. ADTP User's Manual. Requirements
Specification and User Manual for the Abstract Data Type definition Package (ADTP), Software
Engineering Lab., Spring 1988.

[26] George J. Milne. CIRCAL: A calculus for circuit description. Integration, (1):121-160, 1983.

127] George J. Milne. Simulation and Verification: Related Techniques for Hardware Analysis. In
Proceedings of the Seventh International Conference on Computer Hardware Description Lan-
guages, pages 404-417, North-Holland, 1985.

[28] Robin Milner. Colculii for Synchrony and Asynchrony. Technical Report CSR-104-82, Univ. of
Edinburg, 1982. Internal Report.

[29] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980. LNCS 92.

[30] S. Morpurgo, A. Hunger, M. Melgara, and C. Segre. RTL Test Generation and Validation for
VLSI: An Integrated Set of Tools For KARL. In Proc. Seventh International Symposium on
Computer Hardware Description Languages, pages 261-271, North Holland, 1985.

[31] Eric G. Muehle. FROBS: A Merger of Two Knowledge Representation Paradigms. Master's
thesis, Dept. of Computer Science, University of Utah, Salt Lake City, UT 84112, December
1987. FROBS Stands for Frames+Objects.

39

[32] P. Narendran sad J. Stillman. Hardware Verification in the Interactive VHDL Workstation.
In Graham Birtwistle and P.A.Subrahmayam, editors, VLSI Specification, Verification and
Synthesis, pages 235-255, Kluwer Academic Publishers, Boston, 1988. ISBN-0-89838-246-7.

[33] Gordon D. Plotkin. A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19, Aarhus University, Denmark, September 1981.

[34] R.C.Sekar and Mandayam Srivas. Specification and Verification of the Lilith Microprocessor in
SBL. In Banff Hadware Veifmtion Workshop, June 1988, 1988.

[35] Mary Sheeran. Design of Regular Hardware Structures Using Higher Order Functions. In
Proceedings of the Functional Provmming and Computer Architecture Conference, Springer-
Verlag, LNCS 201, September 1985. Nancy, France.

[36] Jan Snepscheut. Trace Theor and VLSI Design. Springer Verlag, 1985. LNCS 200.

[37] Pashupathy A. Subramaniam. Overview of a Conceptual and Formal Basis for An Automat-
able High Level Design Paradigm for Integrated Systems. In Proceedings of the International
Conference for Computer Design and VLSI, Westchester, pages 647-651, 1983.

[38] W.F.Clocksin. Logic Programming and Digital Circuit Analysis. Journal of Logic Programming,
(4):59-82, 1987.

40

A Appendix

A-1 A Specification of PARCOMP

SAn expression Riade HS iII f ,. C,[,... for i {1..m),jE f1..n).
rj re-conditional processes of the form
c,[X = if qj timn TALj].l.. F[h,(X)] and P are non-conditional processes of
the form

M,[X] = Y, : initiala, -. R,(y,);

Each Pi offers a set of initial choices initialsi and for each choice i that is offered, the
future behavior of P is R.(y). HS is the Hidden Set, the set of events and ports hidden
from the parallel composition.
Output: A behaviorally identical process P('7, ... ,X, ...].
Method: A done-list is maintained for each parallel composition 11 {PiX7],...) that has

already been computed. Upon getting a call for performing parallel composition, the
done-list is first consulted.

" If the requested parallel composition is in the done-list, return. Else enter it in the
done-list and proceed as follows.

• Combine all conditional processes into one conditional process C. Combining two con-
ditional processes is done as follows:

C, fX] = if q1 then T, [g1,()] else F,[h,(7)]

C2 M2 = if q2 then T[g2() ee 2[h2(7)]

C1 [%j'] II LC2 ['] = it (q, A q) then T1[g(X')] II T2[g2(T)]
else it (q9 A not(q2)) then T, 1 (T)] II F2 [h2(T)]
else ...etc. (all four combinations)

" Now we are left with the task of computing Hide HS in 11 {P4",..., C). Let C be of
the form

if 91 then C1 [g1 7)]else if 92 then C2192 (Yj)]etC.

II {Pm,-.., C) reduces to a conditional process with qi as the conditions. This condi-
tional has in it parallel compositions of the form 11 {P,[j, ... , C). that is (recursively)
computed. Eventually we are faced with composing non-conditional processes in parallel.
We take this up next.

" Consider 11 {P[7, ...). Let each Pi be

P4X~) cal --o !JjT~

Ica -4 Ri?7)

I ca7' --+ rj Lfj"' (I))

41

9 Generate tuples =< alc 2>

i.e. a tuple of the z 1th initial compound action offered by P1 , the z2th initial compound
action offered by P2, etc. This tuple T is assumed to be the irreducible form arrived at
after applying the action product rules of figure 10. According to the rule for parallel
composition Parcomp all such tuples would become the initial choices of the resultant
process. Following such choices, the resultant process would continue to behave like
11 {R (PV)]W[fM2(],...). However using the hiding information HS, we can
prune many of these choices. In particular,

- those tuples T that contain uanschronized events le that belong to HS are
dropped, and the corresponding arm of the synchronization tree is pruned;

- those tuples T that contain Oe that belong to HS are replaced via the substitution
T[Oidle/Oe].

9 In computing
II {[f (A)t] , [fI R (P")], "") ,

the bindings generated by taking action products of the members of T are taken into
account. 3

A.2 A Brief Description of the HOP Design System

Figure 22 illustrates the data flow diagram of the HOP design system. The rectangular
boxes indicate functional units, and boxes with curved sides indicate intermediate storage
units. Dotted lines show the flow of control, and solid lines show the flow of data. Currently,
working prototypes exist for all the functional units shown in this figure.

Input specifications are entered through text editors. File name extensions .ap, .rp, and
.vp refer to absproc, realproc, and vecproc. Cell specifications are entered using the PPL[33,
37] layout editor called Tiler [20]. (VLSI chips will be described in PPL; see [12] for links
between HOP and PPL.) HOP specifications are compiled into FROBS representations using
the HOP--+FROBS compiler. The algorithm PARCOMP can now be applied on realprocs and
vecprocs (presently implemented only for realprocs). PARCOMP infers functionally equivalent
absproc specifications from realproc and vecproc specifications. The inferred behavior will be
much faster to simulate.

The simulator preprocessor compiles the FROBS database into a form suitable for the
simulator (under development). A data type definition mechanism has been implemented
using FROBS [25]. During simulation, the simulator will be called upon to evaluate functional
expressions that compute new datapath states as well as output port values. These will be
achieved by invoking the operations defined on the various data types. FROBS supports
daemons that can help probe simulation results, as explained in section 5.3.6.

42

Editors ------- nA D
Spec.

m-ap, .rp,
or VP mcl

I -- -- - -Iterace- - - - DefADT

434

